IL multimetro digitale (tester): cosa è e a cosa serve.

Il multimetro digitale è uno strumento che serve a misurare le grandezze in gioco nei circuiti elettrici. È molto utile ed in questi ultimi anni il suo prezzo è diventato talmente popolare che tutti gli hobbisti dovrebbero averne uno tra gli attrezzi, è preferibile al tester a lancetta (analogico) per la sua robustezza e poca sensibilità agli urti e non paragonabile al "mitico" cacciavite cercafase per la gamma e la precisione delle misure. Vediamo ora quali sono appunto le misure basilari per l'hobbista elettrico che si possono effettuare con uno strumento digitale.

Le principali misure che si possono effettuare sono:

- VAC (Volt Alternating Current) ossia Volt (unità di misura delle tensione) in corrente alternata. La Corrente Alternata è semplicemente quella che troviamo in tutte le prese di casa.
- VDC (Volt Direct Current) ossia Volt (unità di misura della tensione) in corrente continua. La Corrente Continua e
 quella che troviamo nelle batterie dell'auto, nelle batterie delle nostre apparecchiature portatili o all'uscita degli
 alimentatori e dei caricabatterie sempre delle nostre apparecchiature ed è identificata da un polo positivo ed uno
 negativo..
- DCA (Direct Current Ampere) ossia Ampere (unità di misura della corrente) in Corrente Continua che serve a misurare quanta corrente "assorbe" per esempio il motorino del giocattolo di vostro figlio o il motorino dell' alzacristalli elettrico delle vostra auto
- ACA (Alternate Current Ampere) ossia Ampere (unità di misura della corrente) in Corrente Alternata che serve allo stesso scopo ma per le apparecchiature in corrente alternata, quella di casa per intenderci. Questa misura però non è presente sui multimetri a fascia di prezzo molto bassa.
- Ω ossia Ohm (unità di misura della resistenza) che serve a misurare per esempio la continuità di un cavo elettrico, la bontà della resistenza di un ferro da stiro o di un phon e tantissime altre cose.

Aiutandoci con la figura sopra vedremo ora come iniziare ad usare il multimetro.

Nella parte inferiore del multimetro troviamo tre alloggiamenti per gli spinotti dei puntali di test.

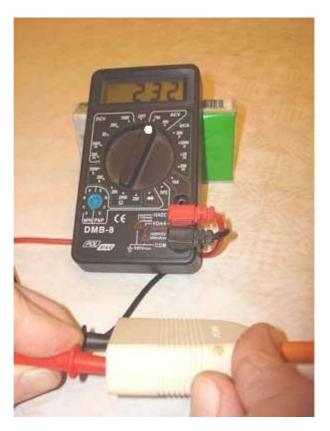
- 1) Il primo, quello più in basso, è definito **COM**. (Comune) e qui troverà collocazione lo spinotto nero, sarà anche il negativo delle nostre misurazioni e non dovrà essere spostato per la totalità delle misurazioni.
- 2) Il secondo porta la dicitura **V--Ω mA** ed alloggerà lo spinotto rosso. Da questo spinotto potremo misurare i Volt in Corrente Continua e in Corrente Alternata, gli OHM della resistenza e gli Ampere nelle fasce più basse della portata, fino a 200 mA nel nostro multimetro, rappresenterà anche il positivo delle nostre misurazioni.
- 3) Nel terzo troviamo uno spinotto denominato **10ADC** che serve a misurare le correnti in Ampere più forti in corrente continua, fino a 10 A appunto.

La combinazione tra il posizionamento del commutatore centrale e quello degli spinotti nella parte inferiore ci permetterà di effettuare un gran numero di misurazioni, utili per le riparazioni.

Il multimetro digitale (tester): misurare la tensione.

Quando si parla di tensione (esempio 230 Volt) è sempre implicito che si parla della differenza di potenziale che c'è tra due punti. Paragonando la tensione con un circuito idraulico, essa corrisponderebbe alla **pressione.**

La sua presenza determina la possibilità di alimentare un utilizzatore, e accendendolo, di fare scorrere in esso la corrente, ossia far fluire attraverso ad esso gli elettroni. Ed ora vediamo come misurarla, iniziando da quella di una semplice batteria.



TENSIONE DC.

Per misurare una Tensione in Corrente Continua dovremo effettuare queste operazioni:

- 1. Spinotto nero su COM
- 2. Spinotto rosso su $V-\Omega$ -mA
- 3. Selettore centrale su **DCV** in posizione **20**, che significa che la massima misurazione ammissibile in questa posizione è di 20 Volt in Corrente Continua

Ora appoggiamo il puntale rosso sul + della batteria, puntale nero sul -, leggiamo quanta tensione c'è ai capi della batteria. Nella foto si misura una batteria AA nuova e leggiamo 1,60 Volt. Se erroneamente invertissimo i puntali, non accade nulla di grave, comparirà sulla sinistra del display il segno – che ci indica la polarità invertita. Una buona regola da seguire in tutte le misurazioni è quella che, se non siamo certi della grandezza da misurare, iniziamo sempre da una scala alta dello strumento. Nel caso specifico delle batterie, difficilmente si può stabilire la carica residua con una misurazione a vuoto, è opportuno quindi misurare il voltaggio della batteria quando è in funzione, installata per esempio nel giocattolo del bimbo, se una batteria da 1,5 Volt scende a 1,1 – 1,2 Volt mentre funziona, è praticamente scarica.

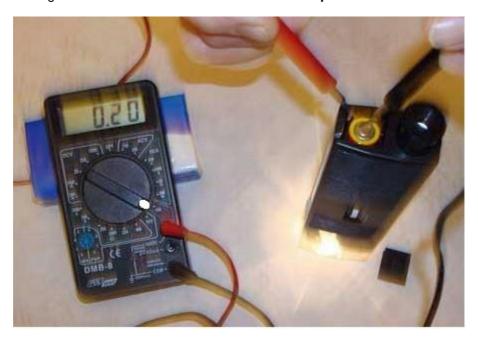


TENSIONE AC.

La misura della tensione alternata è quella che forse interessa di più il fai da tè, permette di controllare la presenza della tensione nelle prese di casa, in una prolunga, o verificare il funzionamento di apparecchiature.

- 1. Spinotto nero su COM
- 2. Spinotto rosso su V-- Ω -mA
- 3. Selettore centrale ACV in posizione 750 V.
- 4. Puntali nella presa in modo casuale, in CA non importa sapere la polarità. Nella foto misuriamo la tensione in una presa di prolunga, e vi leggiamo 232 V. Nelle prese moderne sia mobili che fisse c'è un meccanismo di sicurezza creato per impedire ai bimbi di infilare qualche cosa nelle prese. Questo utile meccanismo a volte provoca difficoltà di inserzione dei puntali, che devono essere inseriti contemporaneamente e poi ruotati per trovare la posizione di lettura. Con il multimetro sui Volt in CA si possono effettuare due altre utili misure, come quella di verificare quale è la fase ed il neutro fra i due conduttori, a patto che esista l'impianto di terra. Con lo strumento predisposto come sopra, posizioniamo uno dei due puntali sull' alveolo centrale della presa e poi spostiamo il secondo puntale su uno o l'altro degli alveoli laterali. Quello che ci darà la lettura di circa 230 V. sarà la fase. Se nessuno dei due ci darà letture, molto probabilmente la terra in quella presa non è connessa.

Il multimetro digitale (tester): misurare la resistenza.


La resistenza elettrica è, per sommi capi, la proprietà dei materiali di opporsi al flusso di elettroni in un circuito elettrico, quindi al passaggio della corrente. Si misura in $\Omega({\sf Ohm})$ e la relazione fra tensione, corrente e resistenza è regolata dalla legge di ${\sf Ohm}$, legge fondamentale che andremo magari a conoscere più avanti. Paragonando la resistenza ad un circuito idraulico, diremmo che è la **sezione** del tubo.

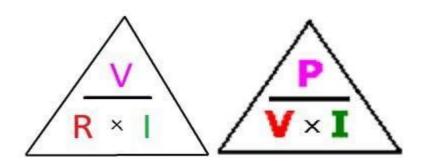
Uno degli effetti collaterali più noti della resistenza è lo sviluppo di calore, vedi stufe elettriche, phon, scaldabagni ecc. Nel fai da te casalingo può essere utile misurare la resistenza delle apparecchiature sopra citate per determinarne una eventuale interruzione, ma può anche essere utile per rilevare l' interruzione di una prolunga e magari l' esistenza di un corto circuito (fili che si toccano quando non dovrebbero) all' interno di essa. Misuriamo ora la continuità di un filo elettrico: dopo averlo sguainato alle due estremità per scoprire un po' di rame, predisponiamo il nostro multimetro così:

- 1. Spinotto nero su COM
- 2. Spinotto rosso su V- Ω -mA
- 3. Selettore centrale in posizione Ω su scala 200, ora il multimetro visualizzerà nella parte sinistra del display, se i puntali non si toccano, il numero 1, che vuol dire circuito aperto o interrotto. Posizionando i puntali sulle due estremità del cavo precedentemente sguainato avremo invece la lettura 00,0 circa (la cifra dopo la virgola può variare leggermente) il che sancisce la continuità del nostro cavo. Mantenendo le stesse regolazioni sullo strumento controlliamo ora la bontà della resistenza di una spazzola per bigodini riscaldata elettricamente (vedi foto allegata). Toccando con i puntali i due spinotti dell'apparecchio il display mostrerà il numero 1, proviamo allora ad aumentare la scala e ruotiamo il selettore in posizione Ω 2000 e vedremo il display segnare 734 Ω , il che ci porta a pensare che la resistenza interna alla spazzola è integra. Ricordatevi sempre e comunque che la misura di resistenza deve essere effettuata su apparecchiature non in tensione e distaccate da ogni altro circuito!

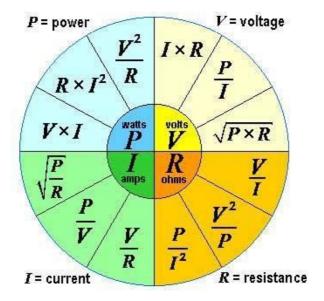
Il multimetro digitale (tester): misurare la corrente.

La corrente elettrica è il flusso di elettroni che "mette in moto" tutte le nostre apparecchiature e quindi fa riscaldare il nostro boiler, fa girare il motore del nostro aspirapolvere e ha centinaia di altre applicazioni. La sua unità di misura è l'Ampere ("A") e si misura sempre in SERIE al circuito che stiamo testando. Paragonata ad un circuito idraulico la corrente è la **portata.**

- . Nel primo esempio misureremo la corrente assorbita da un microscopio giocattolo a batteria. Rimuoviamo il coperchio del contenitore batterie e impostiamo così il multimetro:
- 1) Spinotto nero su COM
- 2) Spinotto rosso su 10 ADC
- 3) Selettore centrale su 10 ADC.


Partiamo dal valore più alto perché non abbiamo la minima idea di quanto possa assorbire la lampada che illumina il visore. Mettiamo il puntale nero sul negativo della batteria (vedi foto) e il puntale rosso sul contatto che porta corrente alla lampada, in modo che lo strumento risulti in serie. Leggiamo 0,20 A. Quindi la nostra lampada necessita di 0,20 A a 3 V per funzionare. Detto così potrebbe non avere molto interesse, ma vedrete più avanti che con pochi calcoli e qualche trucchetto con le nozioni che abbiamo appreso finora sulle misure si arriverà a risultati più interessanti. Questa che abbiamo appena misurato è corrente da batteria e quindi continua. E per la alternata? Purtroppo gli strumenti a basso costo digitali generalmente non dispongono di questa misurazione. Perciò ricorrerò al mio vecchio strumento a lancetta (analogico) che permette queste misurazioni. Non vi spiegherò la disposizione degli spinotti perché è uno strumento completamente diverso da quelli digitali, ma attraverso la foto potrete vedere come si realizza facilmente un aggeggio per potere misurare la corrente in alternata: anche qui il dispositivo di cui vogliamo controllare l'assorbimento di corrente deve risultare in SERIE allo strumento. Connettiamo all' aggeggio la nostra spazzola per capelli elettrica che abbiamo già usato per misurare la resistenza nel precedente articolo, diamo corrente e vedremo che richiede circa 65 mA durante il funzionamento. Prendiamone nota, ci servirà prossimamente. Mi raccomando di spendere qualche euro in più e di acquistare uno strumento che misuri anche la corrente in AC. Ricordiamoci inoltre che queste misurazioni vengono effettuate sempre in tensione, perciò ponete molta ma molta ATTENZIONE a quello che fate!!!!

Il multimetro digitale (tester): come utilizzare le misure.


Nei capitoli precedenti abbiamo visto come utilizzare il multimetro per effettuare le misure principali che interessano l'appassionato del fai da te che ha poche conoscenze di elettrotecnica. Ora, abbiamo affrontato la misura della TENSIONE "V" (in Volt), della RESISTENZA "R" in Ω (Ohm) e della INTENSITA' DI CORRENTE "I" in A (Ampere), che sono le misure basilari dell' elettrotecnica. La relazione fra di loro è regolata dalla LEGGE DI OHM,

$$V = R \times I$$

 $I = V / R$
 $R = V / I$

Come utilizzare le formule per il calcolo della resistenza elettrica.

Tale formula ci dice che vi è una proporzionalità diretta tra tensione e corrente. Infatti, tenendo costante la resistenza, all'aumentare della tensione applicata ai capi di una apparecchiatura, aumenta la corrente che circola in essa. Ma lasciamo le nozioni teoriche, che volendo, potrete approfondire in seguito e troviamo un metodo pratico per affrontare i piccoli problemi del fai da tè elettrico. Nel disegno allegato troverete due triangoli, detti anche triangoli magici, dove, coprendo con un dito il valore che intendete cercare, vedrete la formula necessaria ad ottenerlo, per esempio se conoscete il voltaggio a cui funziona una apparecchiatura e la sua resistenza e volete sapere il suo amperaggio (I che sta per intensità di corrente), coprite con il dito I e vedrete che l' operazione necessaria per ottenere tale valore è V / R e via di seguito. Nel secondo triangolo troviamo un nuovo simbolo, P che è la potenza espressa in Watt, e ci serve per stabilire la " potenza" necessaria a una certa apparecchiatura, perciò se sappiamo che la resistenza della nostra lavatrice funziona a 220 V e abbiamo misurato il suo assorbimento di 10 A e vogliamo sapere i W che consuma, copriamo con il dito la P e vedremo che l'operazione necessaria è V*I e quindi la nostra resistenza assorbirà 2200 W, e se conosciamo P e V e vogliamo conoscere I lo copriremo e vedremo che l' operazione necessaria è P/V! Ma alcune volte si può essere tratti in inganno, per esempio se misuriamo la resistenza di una lampadina ad incandescenza da 60 W troveremo una resistenza di circa 40Ω e facendo tutti i calcoli del caso (V/R= I >> V*I= P) ci accorgiamo che i conti non tornano, il motivo è molto semplice; il filamento della lampadina raggiunge anche i 2000 °C durante il funzionamento e la sua resistenza cambia sensibilmente a quella temperatura!!! Questo non succede in quelle resistenze che non raggiungono temperature molto elevate. come nella lavatrice o nello scaldabagno nelle quali le temperature sono moderate dall' acqua o nel phon dove il mezzo moderatore è l'aria. Tutto quanto abbiamo detto sopra riguarda i circuiti resistivi in corrente continua ed in corrente alternata ma NON riguarda per esempio i motori, le bobine ed i condensatori, che ubbidiscono ad altre leggi che potrete trovare in un qualsiasi manualetto di elettrotecnica. Aggiungo come bonus la figura della "ruota delle formule", utilissima.

BUON LAVORO!!!